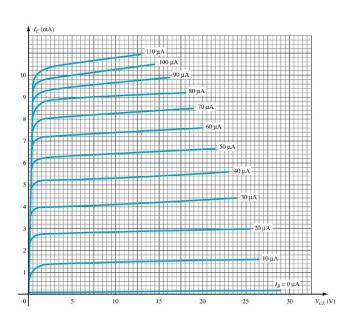
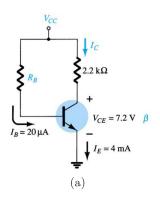
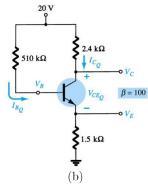


Exercícios extras – capítulos 3 e 4: polarização e modelagem de TBJ


Prof. Alan Petrônio Pinheiro

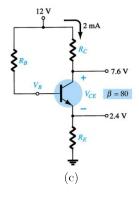
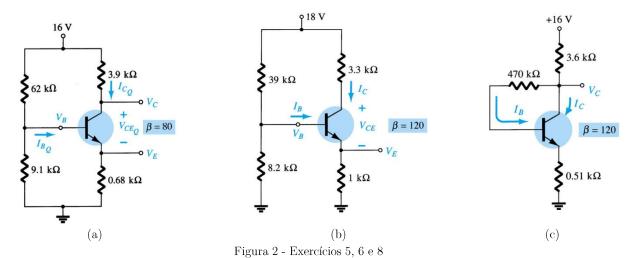
Departamento de Engenharia Elétrica

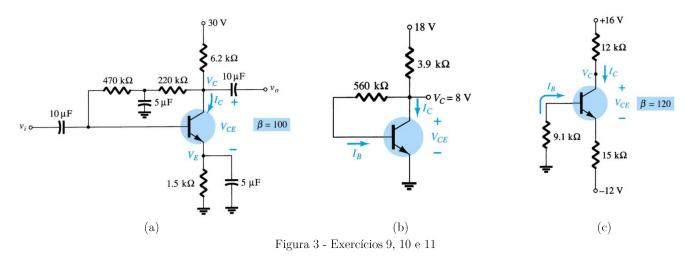

Curso de Engenharia Eletrônica e de Telecomunicações (campus Patos de Minas)


Versão 1.0 - Fevereiro 2013

- 1) Considerando a Figura 1a, determine I_C , V_{CC} , β e R_B .
- 2) Considerando a curva característica ao lado e um circuito de polarização da base, determine:
 - a) a forma da reta de carga sobre as curvas determinadas por $V_{\rm CC}{=}21~V~e~R_{\rm C}{=}3~k\Omega.$
 - b) Escolha um ponto de operação na reta de carga e determine o valor de $R_{\rm B}$ que estabelece este ponto.
 - c) Quais os valores resultantes de I_C e V_{CE} para o ponto de operação escolhido ?
 - d) Qual é o valor de β no ponto de operação?
 - e) Qual é o valor de α no ponto de operação?
 - f) Qual a corrente de saturação do projeto?
 - g) Esboce a configuração com polarização fixa resultante.
 - h) Qual a potência CC dissipada pelo dispositivo no ponto de operação?
 - i) Qual é a potência fornecida pela fonte V_{CC} ?
 - j) Determine a potência dissipada pelos elementos resistivos.

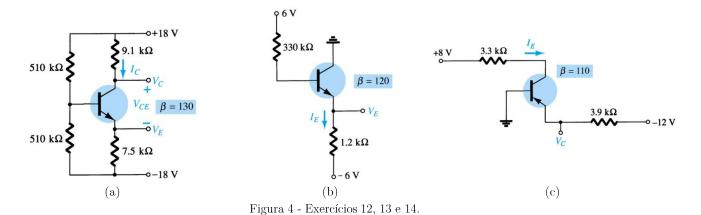
- 3) Para o circuito da Figura 1b, determine I_C, I_B, V_{CE}, V_C, V_B, V_E e corrente de saturação
- 4) Para o circuito da Figura 1c, determine R_{C} , R_{E} , R_{B} , V_{CE} e V_{B}


Figura 1 - Exercícios 1, 3 e 4.

5) Considerando o circuito da Figura 2a, determine I_{BQ} , I_{CQ} , V_{CEQ} , V_{C} , V_{E} , V_{B}

- 6) Considerando o circuito da Figura 2b, determine os parâmetros I_C , V_{CE} , I_B , V_E e V_B .
- 7) Utilizando as características do gráfico do transistor mostrados na figura do exercício 2, determine $R_{\rm C}$ e $R_{\rm E}$ para um circuito de polarização por divisor de tensão cujo ponto de trabalho é $I_{\rm C}=5{\rm mA}$ e $V_{\rm CE}=8{\rm V}$. Considere que $V_{\rm CC}=24{\rm V}$ e $R_{\rm C}=3R_{\rm E}$. Calcule R_2 se $R_1=24{\rm K}$ ohms
- 8) Para a configuração com realimentação de coletor da Figura 2c, determine $I_B,\ I_C$ e V_C



- 9) Para o circuito da Figura 3a, determine $I_{C},\,V_{C},\,V_{E}$ e
 V_{CE}
- 10) Considerando que $V_{C}\!\!=\!\!8V$ na Figura 3b, determine $I_{B},\,I_{C},\,\beta$ e
 V_{CE}
- 11) Para o circuito da Figura 3c, determine $I_B,\,I_C,\,V_{CE}$ e
 V_C

- 12) Para o circuito da Figura 4a, determine $I_B,\,I_C,\,V_E$ e
 V_{CE}
- 13) Para o circuito da Figura 4b, determine $V_{\scriptscriptstyle\rm E}$ e
 $I_{\scriptscriptstyle\rm E}$

14) Para o circuito da Figura 4c, determine $V_{\rm C}$ e $I_{\rm E}$

15) Para o circuito da Figura 5, determine $V_{\rm C}$, $I_{\rm C}$ e $V_{\rm CE}$

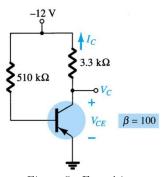


Figura 5 - Exercícios

16) Usando as características da curva do transistor desta lista, projete uma configuração por divisor de tensão que tenha um nível de saturação de 10mA e um ponto Q na metade da distância entre o corte e a saturação. A fonte disponível é de 28V.

Respostas

- 1) Icc=4mA; Vcc= 16V; β =200; Rb= 760k Ω
- 2) a) $Ic=21V/3k\Omega=7mA$; Vce=21V;
 - b) Rb= $810k\Omega$;
 - c) Icq=3,5mA; Vceq=11V; (valores aproximados)
 - d) Beta=3.5 mA/25 uA = 140 x;
 - e) alfa= $\beta/(\beta+1)$
 - f) Icsat = 7mA;
 - h) 11V.3,5mA=39mW;
 - i) P=Vcc(Ic+Ib)=72mW;
 - j) Pr=72mW-39mW=33mW.
- 3) Ibq=30uA; Icq=2,9mA; Vceq=8,6VVc=13V; Vb=5,1V
- 4) a) $2.2k\Omega$; b) $1.2k\Omega$; c) $355k\Omega$; d) 5.1V; e) 3.1V
- 5) Ibq= 21,5uA; Icq= 1,7mA; Vceq=8,2V(não se pode usar a aproximação)
- 6) Ve=2,4V; Ic=2,4mA; Vce=7,5V; Ib=20,2uA
- 7) Re= 800Ω ; Rc= $2.4k\Omega$; R2= $5.8k\Omega$
- 8) Ib=16uA; Ic=1,9mA; Vc=9V.
- 9) Ib=20uA. Ic=2mA, Vc=17,5V; Ve=3V; Vce= 14,5V
- 10) Ib=13uA; Ic=2,5mA; β=200; Vce=8V
- 11) Ib=6,2uA; Ic=0,75mA; Vce=8V; Vc=7V
- 12)Ib=14uA; Ic=1,8mA; Ve=-4,4V;
- 13) Ie=2.8mA; Ve=-2.5V
- 14) Ie=2,2mA; Vc=-3,4V
- 15) Ic=2,2mA; Vc=-4,7V; Vce=-4,7V
- 16) vários modelos de projeto. Verificar resultado no MultiSim.