


Exercícios extras – capítulo 5: amplificação de pequenos sinais

Prof. Alan Petrônio Pinheiro

Faculdade de Engenharia Elétrica

Curso de Engenharia Eletrônica e de Telecomunicações (campus Patos de Minas)

- 1) Projete cada um dos seis circuitos listados na sequência de forma que todos eles estejam polarizados próximo a metade da reta de carga e com os parâmetros Z_i , Z_o e A_v especificados (valores aproximados). Considere uma fonte de 15V e estipule o valor de h_{FE} que desejar (desde que esteja entre a faixa de 100 a 400x). Faça todas as considerações que julgar necessárias e utilize o Multisim para verificar os resultados da polarização.
 - a) polarização da base com $Z_i = 1k\Omega$, $Z_o = 4k\Omega$ e $A_v = 400$.
 - b) polarização do emissor com $Z_i = 50k\Omega, Z_o = 3k\Omega$ e $A_v = 5$.
 - c) seguidor de emissor com $Z_i = 50k\Omega$, $Z_0 = 20\Omega$ e $A_i = 50$ (ganho de corrente!).
 - d) divisão de tensão com $Z_i = 2k\Omega,\, Z_o = 2k\Omega$ e $A_v > 200.$
 - e) base comum com $Z_{i}=20\Omega,\,Z_{o}=2k\Omega$ e $A_{v}>200.$
 - f) realimentação de tensão com $Z_i = 1k\Omega,\,Z_o = 2k\Omega$ e $A_v > 200.$
 - 2) Considerando a figura abaixo, determine os pontos de tensão V_A , V_B , e V_C na figura abaixo. Determine também o ganho de corrente do circuito. Por fim, redesenhe o circuito segundo o modelo de 2 portas equivalente. Considere um $h_{FE}=100$.

3) Considere um sensor de temperatura que tem a escala de 10mV para cada aumento de 1°C. Considere ainda que este sinal deve ser amplificado para entrar em um conversor AD. A tensão de entrada no conversor deve estar na faixa de 0 a 5V (fundo de escala). Considere que a máxima temperatura mensurável no ambiente é 100°C e a mínima é 0°C (nesta temperatura, considere que o sensor não produz tensão). Projete um circuito para amplificar este sinal até esta faixa de entrada do conversor de forma que este dado possa ser digitalizado.