
## Universidade Federal de Uberlândia Campus Patos de Minas - Prof. Alan Petrônio Pinheiro

## Segunda prova de Eletrônica Analógica 1

## 1 – Calcule o que se pede:

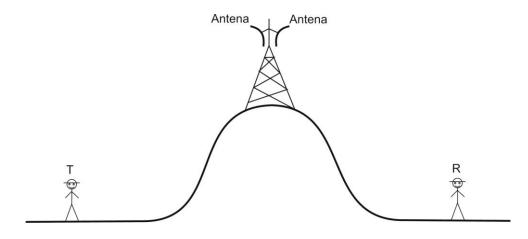
- a) (5%) Para o circuito da Figura 1a, calcule I<sub>E</sub>, V<sub>CE</sub> e V<sub>E</sub>.
- b) (5%) Para o circuito da Figura 1b, Considere Vcc=12V e que o LED deve ser acionado por uma corrente de 100mA o que produz uma queda de 3V. Quanto devem valer R1, R2 e Vz se  $h_{\text{FE}}$ =300?
- c) (10%) Para o circuito da Figura 1c, Considere os pontos de polarização de Ie=1mA e |VCE|=10V. Usando um transistor PNP (cujo h<sub>FE</sub>=200) determine os valores das fontes e suas resistências de polarização.



\_\_\_\_\_

- 2 Responda as questões abaixo. Considere os valores de tensão de alimentação  $V_{CC}$  e  $h_{fe}$  que julgar mais convenientes (evite fontes maiores que 30V e ganhos  $h_{fe}$  maiores que 350) e as destaque no texto para facilitar a avaliação do seu projeto. Deixe todos cálculos indicados.
  - a) (5%) Projete um circuito transistorizado para trabalhar na região de corte e saturação (**forte**) com corrente de saturação de 100mA. Utilize o modelo de polarização que desejar.
  - b) (10%) Projete um circuito de polarização por divisor de tensão com impedância CA de entrada de 3kΩ, impedância CA de saída de também 3kΩ e ganho de tensão de aproximadamente 100x. Polarize o transistor o mais próximo possível do centro da reta de carga.

-----


- 3 A partir da figura abaixo (com h<sub>FE</sub>=100), responda:
  - a) (10%) O circuito equivalente usando o modelo de 2 portas.
  - b) (5%) Qual o ganho de tensão total do circuito considerando uma entrada de 10mV de pico.
  - c) (5%) Qual a corrente CA que sai da fonte e qual a corrente CA que chega a carga de 1k ohm?
  - d) (5%) Considere que o sinal de entrada tenha seus componentes de frequência na faixa de 1kHz a 10kHz. Recalcule os valores de capacitância de entrada da base comum e do capacitor de acoplamento do segundo estágio logo após a base comum.



-----

4-(15%) Considere que um transmissor T deseja enviar um sinal a um receptor R. Contudo, o sinal não tem potência suficiente para ir de T a R. Existe ainda uma barreira física entre eles (montanha). Para amplificar o sinal e dar caminho a este sinal, foram inseridas duas antenas no alto da montanha confirma ilustra o diagrama da Figura 3. Note que a antena que recebe o sinal de T tem uma impedância de saída de  $50\Omega$  e é ligada a um circuito amplificador que deve amplificar o sinal de potência recebido (amplificar tensão em pelo menos 500x) e depois retransmiti-lo para uma segunda antena apontada para o receptor R. Esta segunda antena também tem impedância de entrada  $50\Omega$ . Projete:

- a) o circuito amplificador esquematicamente usando o modelo de duas portas e
- b) o esboço do circuito sem a necessidade de indicação dos valores de R, Vcc e  $h_{fe}$  Utilize a menor quantidade de estágios possíveis e tente otimizar todas as variáveis que puder.



 $\mathbf{5}$  – (25%) Projete todo o circuito esboçado na questão anterior (indique todos valores de R, Vcc,  $h_{fe}$  e C). Evite fontes maiores que 30V e  $h_{FE}$  maiores que 500.