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Abstract—The fast Fourier transform is a computational tool
which facilitates signal analysis such as power spectrum analysis and
filter simulation hy means of digital computers. It is a method for
efficiently computing the discrete Fourier transform of a series of
data samples (referred to as a time series). In this paper, the discrete
Fourier transform of a time series is defined, some of its properties
are discussed, the associated fast method (fast Fourier transform)
for computing ¢iiz transform s derved, and somme of the computa-
tional aspects of the method are presented. Examples are included to
demonstrate the concepts involved.

INTRODUCTION
&_N ALGORITHM for the computation of Fourier

coefficients which requires much less computa-

tional effort than was required in the past was
reported by Cooley and Tukey [1] in 1965. This method
is now widely known as the “fast Fourier transform,”
and has produced major changes in computational tech-
niques used in digital spectral analysis, filter simulation,
and reflated fields. The technique has a long and in-
teresting history that has been summarized by Cooley,
Lewis, and Welch in thisissue [2].

The fast Fourier transform (FFT) is a method for
efficiently computing the discrete Fourier transform
(DFT) of a time series (discrete data samples). The
efficiency of this method is such that solutions to many
problems can now be obtained substantially more eco-
nomically than in the past. This is the reason for the
very great current interest in this technique.

The discrete Fourier transform (DFT) is a transform
in its own right such as the Fourier integral transform
or the Fourier gseries transform. It is a powerful revers-
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ible mapping operation for time series. As the name
implies, it has mathematical properties that are entirely
analogous to those of the Fourier integral transform. In
particular, it defines a spectrum of a time series; multi-
plication of the transform of two time series corre-
sponds to convolving the time series.

If digital analysis techniques are to be used for
analyzing a continuous waveform then it is necessary
that the data be sampled (usually at equally spaced
intervals of time) in order to produce a time series of
discrete samples which can be fed into a digital com-
puter. As is well known [6], such a time series com-
pletely represents the continuous waveform, provided
this waveform is frequency band-limited and the
samples are taken at a rate that is at least twice the
highest frequency present in the waveform. When these
samples are equally spaced they are known as Nyquist
samples. It will be shown that the DFT of such a time
series is closely related to the Fourier transform of the
continuous waveform from which samples have been
taken to form the time series. This makes the DFT
particularly useful for power spectrum analysis and
filter simulation on digital computers. ‘

The fast Fourier transform (FFT), then, is a highly
efficient procedure for computing the DFT of a time
series. It takes advantage of the fact that the calcula-
tion of the coefficients of the DFT can be carried out
iteratively, which results in a considerable savings of
computation time. This manipulation is not intuitively
obvious, perhaps explaining why this approach was
overlooked for such a long time. Specifically, if the
time series consists of N =27 samples, then about
2nN=2N-log: N arithmetic operations will be shown
to be required to evaluate all IV associated DFT co-
efficients. In comparison with the number of gperations
required for the calculation of the DFT coefficients with
straightforward procedures (IV?), this number is so
small when V is large as to completely change the com-
putationally economical approach to various problems.
For example, it has been reported that for N=8192
samples, the computations require about five seconds
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for the evaluation of all 8192 DFT coefficients on an
IBM 7094 computer. Conventional procedures take on
the order of half an hour.

The known applications where a substantial reduction
in computation time has been achieved include: 1)
computation of the power spectra and autocorrelation
functions of sampled data [4]; 2) simulation of filters
[5]; 3) pattern recognition by using a two-dimensional
form of the DET; 4) computation of bispectra, cross-
covariance functions, cepstra and related functions;
and 5) decomposing of convolved functions.

THE DiscrRETE FOURIER TraNsrorM (DFT)
Definition of the DFT and its Inverse

Since the FFT is an efficient method for computing
the DFT it is appropriate to begin by discussing the
DFT and some of the properties that make it so useful
a transformation. The DFT is defined by!

N

]

1

4, = r=0,---,N—1 (1)

™

X, exp (—2mjrk/N)

£
Il
o

where A4, is the rth coefficient of the DFT and X, de-
notes the kth sample of the time series which consists
of N samples and j=+/—1. The X}’s can be complex
numbers and the A4,’s are almost always complex. For
notational convenience (1) is often written as

N—1
4, =2 (X)W* r=0,---,N=1 (2
k=0
where
W = exp (~2mj/N). ©)

Since the X's are often values of a function at discrete
time points, the index 7 is sometimes called the “fre-
quency” of the DFT. The DFT has also been called the
“discrete Fourier transform” or the “discrete time,
finite range Fourier transform.”

There exists the usual inverse of the DFT and, be-
cause the form is very similar to that of the DFT, the
FFT may be used to compute it.

The inverse of (2) is

N—1
X, =1/N) D AW =01, -, N—1. (4
=0
This relationship is called the inverse discrete Fourier
transform (IDFT). It is easy to show that this inversion
is valid by inserting (2) into (4)

N—1 N1
Xo= 2 2 (X/M)Wre=n. (5)
=0 F=0
Interchanging in (5) the order of summing over the
indices 7 and %, and using the orthogonality relation

! The definition of the DFT is not uniforn in the literature. Some
authors use 4,/N as the DFT coefficients, others use 4,/+/N, still
others use a positive exponent.

N1
2. exp (2mj(n — m)r/N) = N, if n = m mod N
r=0

= 0, otherwise (6)

establishes that the right side of (5) is in fact equal
to X,.

It is useful to extend the range of definition of 4, to
all integers (positive and negative). Within this def-

inition it follows that

Ay = Aniy = Aoygr = -+ - ™

Similarly,

Xi=Xn =Ny =+ -. (8)

Relationships between the DFT and the Fourier Trans-
form of a Continuous Waveform

An important property that makes the DFT so
eminently useful is the relationship between the DFT
of a sequence of Nyquist samples and the Fourier trans-
form of a continuous waveform, that is represented by
the Nyquist samples. To recognize this relationship,
consider a frequency band-limited waveform g(z) whose
Nvquist samples, X, vanish outside the time interval
0<t<NT

Nlsin (vt — RT)/1
g = 3 DL B ©)
w0 (¢ — k1)/T)
where T is the time spacing between the samples. A
periodic repetition of g(¢f) can be constructed that has
identically the same Nyquist samples in the time in-
terval 0 <y <NT

N—1

> X,

1 k=0

sin (r(t — T ~ INT)/T)
(r(t — T — INT)/T)

gp(t) = (10)

Let the Fourier transform of g(f) be G(f). As is well
known [6], this transform is exactly specified at dis-
crete frequencies by the complex Fourier series coef-
ficients of g,(¢). From this it {ollows:

Gn/NT) -
NT

n

NT
= ({1/NT) f 2o(t) -exp (—2mini/NT) - dt
)}

N—1
= (1/NT) Y. Xp-exp (—2njnkT/NT)

k=0

(11)

where |n| <N/2 due to the spectral bandwidth limita-
tion implicitly assumed by the sampling theorem under-
lying the validity of Nyquist samples.

Comparing (11) and (1) it is seen that they are ex-
actly the same except for a factor of N7 and (», #) are

both unbounded. That is,
N-A,=D, for r=n and T=1 second. (12)

The bounds specified for » and # require a correspon-
dence which depends on (7)
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G(n/NT
_(Zz/_)z D,=N-A,
NT
where
n=7r forn =0,1,:--,¢ < N/2,
and
n=N—7 forw=—1,-2,---,—qg>—N/2 (13)
and
G(n/NT)
————=D,=N-4,/2 forn = N/2. (14)
NT

Equations (13) and (14) give a direct relationship be-
tween the DFT coefficients and the Fourier transform
at discrete frequencies for the waveform stipulated by
(9). A one-to-one correspondence could have been ob-
tained if the running variable » had been bounded by
+ N /2. This, however, would have required distinguish-

g (1)

ing between even and odd values of N, a distinction
avoided by keeping  positive.

A waveform of the type considered by (9) is shown
in Fig. 1(e). It is usually obtained as an approximation
of a frequency band-limited source waveform [such as
the one sketched in Fig. 1(a) | by truncating the Nyquist
sample series of this waveform, and reconstructing the
continuous waveform corresponding to the truncated
Nyquist sample series [Fig. 1(b), (d), and (e)]. Not-
withstanding the identity of the Nyquist samples of this
reconstructed waveform and the frequency band-
limited source waveform, these waveforms differ in the
truncation interval [Fig. 1(c) and (e)]. The difference
is usually referred to as aliasing distortion; the mechan-
ics of this distortion is most apparent in the frequency
domain [Fig. 1(c)—(e)]. It can be made negligibly small
by choosing a sufficiently large product of the fre-
quency bandwidth of the source waveform and the
duration of the truncation interval [6] (e.g., N is
greater than ten).
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(a) Frequency-band-limited source waveform.

(b) Nyquist samples of the frequency band-limited
source waveform.

(c) Truncated source waveform.

(d) Truncated series of Nyquist samples of the source
waveform.

n

NT {e) Frequency-band-limited waveform whose Nyquist
samples are identical to the truncated series of
Nyquist samples of the source waveform.

waveform.
(g) Periodic continuation of the truncated series of

lay],
Xs OFT
T (n)

] (f) Periodic continuation of the truncated source

Nyquist samples of the source waveform.
(h) DFT coefficients interpreted as Fourier series co-
efficients producing complex waveform.

Fig. 1, Related waveforms and their corresponding spec-
tra as defined by the Fourier transforms (integral trans-

forms for energy-limited waveforms; series transform
for periodic waveforms).
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These aliasing distortions are carried over directly to
the discrete spectra of the periodically repeated wave-
forms [Fig. 1(f) and (g)], and appear correspondingly
in the DFT of the truncated series of Nyquist samples
[Fig. 1(h)]. It may be of interest to observe that the
waveform corresponding to the DFT coefficients inter-
preted as Fourier series coefficients is complex [Fig.

1(h)].

Some Useful Properties of the DFT

Another property that makes the DFT eminently
useful is the convolution relationship. Thatis, the IDFT
of the product of two DEFT's is the periodic mean convo-
lution of the two time series of the DFTs. This relation-
ship proves very useful when computing the filter out-
put as a result of an input waveform; it becomes
especially effective when computed by the FEFT. A
derivation of this property is given in Appendix A.

Other properties of the DEFT are in agreement with
the corresponding properties of the Fourier integral
transform, perhaps with slight modifications. For ex-
ample, the DFT of a time series circularly shifted by % is
the DFT of the time series multiplied by W~ Further-
more, the DFT of the sum of two functions is the sum of
the DFT of the two functions. These properties are
readily derived using the definition of the DFT. These
and other properties have been compiled by Gentleman
and Sande [7].

TrE FAsT FOURIER TRANSFORM
General Description of the FFT

As mentioned in the Introduction, the FFT is an
algorithm that makes possible the computation of the

DET of a time series more rapidly than do other algo-
rithms available. The possibility of computing the DFT
by such a fast algorithm makes the DFT technique
important. A comparison of the computational savings
that may be achieved through use of the FFT is summa-
rized in Table I for various computations that are fre-
quently performed. It is important to add that the com-
putational efforts listed represent comparable upper
bounds; the actual efforts depend on the number N and
the programming ingenuity applied [7].

It may be useful to point out that the FFT not only
reduces the computation time; it also substantially
reduces round-off errors associated with these computa-
tions. In fact, both computation time and round-off
error essentially are reduced by a factor of (logs N)/N
where N is the number of data samples in the time
series. For example, if N=1024=2" then N log,
N=10 240 [7], [9]. Conventional methods for comput-
ing (1) for N'=1024 would require an effort proportional
to N?=1 048 376, more than 50 times that required with
the FFT.

The FET is a clever computational technique of se-
quentially combining progressively larger weighted
sums of data samples so as to produce the DFT coeffi-
cients as defined by (2). The technique can be inter-
preted in terms of combining the DEFTs of the individual
data samples such that the occurrence times of these
samples are taken into account sequentially and applied
to the DFTs of progressively larger mutually exclusive
subgroups of data samples, which are combined to ulti-
mately produce the DFT of the complete series of data
samples. The explanation of the FFT algorithm adopted
in this paper is believed to be particularly descriptive for
programming purposes.

TABLE I
COMPARISON OF THE NUMBER OF MULTIPLICATIONS REQUIRED USING “DIRECT” AND FFT METHODS

Approximate Number of Multiplications
upper comparable bounds
Operation Formula (upp P nds)
Direct FFT
N-1
Discrete Fourier Transform (DFT) D Xye ikl r=12+--,N—1 N? 2N loga N
k=t
N1
Filtering (Convolution) > XpVur u=01,.-.-- N—-1 NZ 3N log: N
k=0
N=1—r N /N
Autocorrelation Functions > XiXes r=0,1,--- , N —1 Y (7 + 3) 3N logz N
k=0
N—1N—1
Two-Dimensional Fourier Transform (Pattern Analysis)] D D Xy, e &t sy ¢ =0,1,+ .- , N —1 Nt 4N?logs N
k=0 1=0
N-1N—1
Two-Dimensional Filtering P> XeaVene g, r=12..- N—-1 Nt 3N%logs N
k=0 =0
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Conventional Forms of the FFT

Decimation in Time: The DFT [as per (2)] and its
inverse [see (4)] are of the same form so that a proce-
dure, machine, or sub-routine capable of computing one
can be used for computing the other by simply exchang-
ing the roles of X, and 4, and making appropriate
scale-factor and sign changes. The two basic forms of
the FFT, each with its several modifications, are there-
fore equivalent. However, it is worth distinguishing
between them and discussing them separately. Let us
first consider the form used by Cooley and Tukey [1]
which shall be called decimation in time. Reversing the
roles of A, and X, gives the form called decimation in
Sfrequency, which will be considered afterwards.

Suppose a time series having N samples [such as X}
shown in Fig. 2(a) ] is divided into two functions, ¥; and
Zy, each of which has only half as many points (V/2).
The function YV is composed of the even-numbered
points (X, X3, X4 - - - ), and Z; is composed of the odd
numbered points (X1, X3, X5 - - - ). These functions are
shown in Fig. 2(b) and (c), and we may write them
formally as

YVi=Xun
AT
== 1.
2

E=0,1,2, - (15)

Zx = X1

Since Y, and Z; are sequences of N/2 points each, they
have discrete Fourier transforms defined by

(wv/2)—-1

B, = Y, Y.exp (—4mjrk/N)

5=0

r=20,1,2 --

Y1 e
bl 2 2 .

(N/2)—1
C. = 2, Zpexp (—4njrk/N)
k=0

The discrete Fourier transform that we want is A4,,
which we can write in terms of the odd- and even-
numbered points

(N 129)~1
A4, = {Yk exp (—4njrk/N)
=0
2mgr
r=0,12---  N—1 (17
or
(N12)—1
A, = 2, Vyexp (—4njrk/N)
k=0
(V/2)—1
+ exp (—2wjr/N) >, Zpexp (—4njrk/N) (18)
£=0

which, using (16), may be written in the following form:

A, = B, + exp (— 2njr/N)C, 0<r<N/2. (19)

For values of 7 greater than N/2, the discrete Fourler
transforms B, and C, repeat periodically the values
taken on when » <NN/2. Therefore, substituting -+ N/2
for » in (19), we obtain

N
Aeywie = B, + exp (—-Zvrjl:r + 7}/1\’) C-

0<r<N/2
= B, — exp (=2mjr/N)C, 0 <7< N/2. (20)
By using (3), (19) and (20) may be written as
4, = B, + WC, 0<r<N/2 (21)
Aoy = B, — W'C,  0<r<N/2.  (22)

From (21) and (22), the first N/2 and last N/2 points of
the discrete Fourier transform of X; (a sequence having
N samples) can be simply obtained from the DFT of ¥
and Zy, both sequences of N/2 samples.

Assuming that we have a method which computes
discrete Fourier transforms in a time proportional to the
square of the number of samples, we can use this algo-
rithm to compute the transforms of ¥; and Z;, requiring
a time proportional to 2(N/2)2, and use (21) and (22) to
find 4, with additional N operations. This is illustrated
in the signal flow graph of Fig. 3. The points on the left
are the values of X (i.e., ¥, and Z;), and the points on
the right are the points of the discrete Fourier trans-
form, A4,. For simplicity, Fig. 3 is drawn for the case
where X; is an eight-point function, and advantage is
taken of the fact that W»= — W»=¥/2  as per (3).

However, since Y, and Z; are to be transformed, and
since we have shown that the computation of the DFT
of N samples can be reduced to computing the DFTs of
two sequences of V/2 samples each, the computation of
Bi (or Ci) can be reduced to the computation of se-
quences of N/4 samples. These reductions can be car-
ried out as long as each function has a number of sam-
ples that is divisible by 2. Thus, if N =2" we can make »
such reductions, applying (15), (21), and (22) first for
N, then for N/2, - - -, and finally for a two-point func-
tion. The discrete Fourier transform of a one-point
function is, of course, the sample itself. The successive
reduction of an eight-point discrete Fourier transform,
begun in Fig. 3, is continued in Figs. 4 and 5. In Fig. 5
the operation has been completely reduced to complex
multiplications and additions. From the signal flow
graph there are 8 by 3 terminal nodes and 2 by & by 3
arrows, corresponding to 24 additions and 48 multiplica-
tions. Half of the multiplications can be omitted since
the transmission indicated by the arrow is unity. Half of
the remaining multiplications are also easily eliminated,
as we shall see below. Thus, in general, N-.log: N com-
plex additions and, at most, 4N -loga N complex multi-
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Fig. 2. Decomposition of a time series into two part-time Fig. 4. Signal flow graph illustrating further reduction of
series, each of which consists of half the samples. the DFT computation suggested by Fig. 3.
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Fig. 3. Signal flow graph illustrating the reduction of endpoint
DFET to two DFTs of N/2 points each, using decimation in time.
The signal flow graph may be unfamiliar to some readers. Basi- X3
cally it is composed of dots (or nodes) and arrows (transmis-
sions). Each node represents a variable, and the arrows terminat-
ing at that node originate at the nodes whose variables contribute
to the value of the variable at that node. The contributions are
additive, and the weight of each contribution, if other than unity, X
is indicated by the constant written close to the arrowhead of
the transmission. Thus, in this example, the quantity 4 at the . . .
bottom right node is equal to B;+ 75X Cs. Operations other than  Fig. 5. Signal flow graph illustrating the computation of the DFT
addition and constant multiplication must be clearly indicated by when the operationsjinvolved are completely reduced to multipli-
symbols other than - or —. cations and additions

7
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plications are required for computation of the discrete
Fourier transform of an N point sequence, where N is a
power of 2.

When N is not a power of 2, but has a factor p, the
development of equations analogous to (15) through
(22) is possible by forming p different sequences,
Y, =X i, each having N/p samples. Each of these
sequences has a DFT B,®, and the DFT of the sequence
X can be computed from the p simpler DFTs with pN
complex multiplications and additions. That is,

p—1
Arimvpy = Z B, @O W élrtm(¥ iv)]

i=0

m=0,12 ..., p—1

?’20,1,2,"‘ (23)

,—— 1.

The computation of the DFT's can be further simplified
if N has additional prime factors.

Further information about the fast Fourier transform
can be extracted from Fig. 5. For example, if the input
sequence X is stored in computer memory in the order

Xo: X4y XZ) XG: Xl) X5: X3) X7y (24)
as in Fig. 5, the computation of the discrete Fourier
transform may be done “in place,” that is, by writing all
intermediate results over the original data sequence, and
writing the final answer over the intermediate results.
Thus, no storage is needed beyond that required for the
original N complex numbers. To see this, suppose that
each node corresponds to two memory registers (the
guantities to be stored are complex). The eight nodes
farthest to the left in Fig. 5 then represent the registers
containing the shuffled order input data. The first step
in the computation is to compute the contents of the
registers represented by the eight nodes just to the right
of the input nodes. But each pair of input nodes affects
only the corresponding pair of nodes immediately to the
right, and if the computation deals with two nodes at a
time, the newly computed quantities may be written
into the registers from which the input values were
taken, since the input values are no longer needed for
further computation. The second step, computation of
the quantities associated with the next vertical array of
nodes to the right, also involves pairs of nodes although
these pairs are now two locations apart instead of one.
This fact does not change the property of “in place”
computation, since each pair of nodes affects only the
pair of nodes immediately to the right. After a new pair
of results is computed, it may be stored in the registers
which held the old results that are no longer needed. In
the computation for the final array of nodes, corre-
sponding to the values of the DFT, the computation
involves pairs of nodes separated by four locations, but
the “in place” property still holds.’

For this version of the algorithm, the initial shuffling
of the data sequence, X,., was necessary for the “in
place” computation. This shuffling is due to the re-
peated movement of odd-numbered members of a se-
quence to the end of the sequence during each stage of
the reduction, as shown in Figs. 3, 4, and 5. This shuf-
fling has been called bit reversal? because the samples are
stored in bit-reversed order; i.e., X=X ¢0, is stored
in position (011);=3, etc. Note that the initial data
shuffling can also be done “in place.”

Variations of Decimation in Time: If one so desires,
the signal flow graph shown in Fig. 5 can be manipu-
lated to yield different forms of the decimation in time
version of the algorithm. If one imagines that in
Fig. 5 all the nodes on the same horizontal level as
Ay are interchanged with all the nodes on the same
horizontal level as 4, and all the nodes on the level of
Aj are interchanged with the nodes on the level of 45,
with the arrows carried along with the nodes, then one
obtains a flow graph like that of Fig. 6.

For this rearrangement one need not shuffle the origi-
nal data into the bit-reversed order, but the resulting
spectrum needs to be unshufled. An additional disad-
vantage might be that the powers of W needed in the
computation are in bit-reversed order. Cooley’s original
description of the algorithm [1] corresponds to the flow
graph of Fig. 6.

A somewhat more complicated rearrangement of Fig.
5 yields the signal flow graph of Fig, 7. For this case
both the input data and the resulting spectrum are in
“natural” order, and the coefficients in the computation
are also used in a natural order, However, the computa-
tion may no longer be done “in place.” Therefore, at
least one other array of registers must be provided.
This signal flow graph, and a procedure corresponding
to it, are due to Stockham [8].

Decimation in Frequency: Let us now consider a
second, quite distinct, form of the fast Fourier trans-
form algorithm, decimation in frequency. This form was
found independently by Sande [7], and Cooley and
Stockham [8]. Let the time series X; have a DFT 4,.
The series and the DFT both contain N terms. As
before, we divide X} into two sequences having N/2
points each. However, the first sequence, Y, is now
composed of the first N/2 points in X, and the second,
Z, is composed of the last N/2 points in X;. Formally,
then

Y, = X,
N .
oy L (23)
Zy = Xinge
2 This is a special case of digit reversal where the radix of the

address is 2; more general digit reversals are available for transforms
with other radices.
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w

Fig. 6. Rearrangement of the flow graph of Fig. 5 illustrating the Fig, 7. Rearrangement of the flow graph of Fig. 5 illustrating the

DFT computation from naturally ordered time samples. DFT computation without bit reversal.
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Fig. 8. Signal flow graph illustrating the reduction of endpoint
DFT to two DFTs of N/2 points each, using decimation in fre-
quency.
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Fig. 9. Signal flow graph illustrating further reduction of
the DFT computation suggested by Fig. 8.
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-w3

Fig. 11. Rearrangement of the flow graph of Fig. 10 illustrating the
computation of the DFT to yield naturally ordered DFT coeffi-
cients.

Xy

Fig. 10. Signal flow graph illustrating the computation of the DFT
when the operations involved are completely reduced to multi-
plications and additions.
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Fig. 12. Rearrangement of the flow graph of Fig. 10 illustrating

the DFT computation without bit reversal.
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The N point DFT of X, may now be written in terms of
Y. and Zy

(v 2)—1
A, = {Yk exp (—2mjrk/N)
k=0
N
+ Z, exp (—27rj7’ l:k + ?]/N>} (26)
(N/2)=1 ) )
A, = > Vit lexp (—wjr) | Zi] exp (—2xjrk/N). (27)
k=0

Let us consider separately the even-numbered and odd-
numbered points of the transform. Let the even-num-
bered points be R, and the odd-numbered points be S,
where
Rr = /127‘
0<r< N/2 (28)

Sr = A2r+1

Itis this step that may be called decimation in frequency.
Note that for computing the even-numbered spectrum
points, (27) becomes simply

Ro= du= 5 (Vi ZJectmmorem (o)

(V/2)—1
k=0

which we recognize as the N/2 point DFT of the func-
tion (Y, +Zx), the sum of the first N/2 and the last N/2
time samples. Similarly, for the odd-numbered spec-
trum points, (27) becomes

(N/2)—1

S, = A2r+1 =

Z { V.4 Ziexp (——wj[Zr + 1])}
k=0
cexp (—2mj[2r + 1]E/N)
(¥ j2)—1
= Z { vV, — Zk} g (2 NG [ 2mirk) (N ID] - (30)
k=0

which we recognize as the N/2 point DFT of the func-
tion (Y, —2Z,) exp(—2wjk/N).

I't can be concluded from (29) and (30) that the DFT
of an N-sample sequence, X, may be determined as
follows. For even-numbered transform points, it may be
computed as an N/2 point DFT of a simple combination
of the first N/2 and last N/2 samples of X, For odd-
numbered transformi points, it may be computed as
another N/2 point DFT of a different simple combina-
tion of the first and last N/2 samples of X. This is illus-
trated in the signal flow graph of Fig. 8 for an eight-
point function. W has been defined in (3).

As was the case with decimation in time, we can re-
place each of the DFTs indicated in Fig. 8 by two
2-point DFTs, and each of the 2-point DFTs by two
1-point transforms, these last being equivalency opera-
tions. These steps are indicated in Figs. 9 and 10.

Examination of Fig. 10 gives us much information
about the method of decimation in frequency, and al-
lows us to compare it with decimation in time. Both
methods require NV/2-log N complex additions, complex
subtractions, and complex multiplications. Both compu-
tations can be done in place. If the coefficients in the
computation are to be used in a “natural” rather than
“bit-reversed” order, as in Figs. 5 and 10, then the deci-
mation in frequency method works on time samples in
unshuffled order and yields frequency samples in shuf-
fled (bit-reversed) order. Recall that Fig. 5 yielded the
opposite result.

We are also able to rearrange the nodes in Fig. 10 to
obtain the signal flow graph, Fig. 11, which works on
shuffled time samples and yields naturally ordered fre-
quency samples, but the coefficients are needed by the
computation in bit-reversed order. The geometry of
this signal flow graph is identical to the geometry of
Fig. 5, just as the geometry of Fig. 10 is identical to the
geometry of Fig. 6. The differences lie in the transmis-
sions.

A somewhat more complicated rearrangement of
Fig. 10 (shown in Fig. 12) yields a signal flow graph that
takes unshuffled samples of the time series and pro-
duces a set of Fourier coefficients that are noi in bit-
reversed order. The computation cannot, however, be
done “in place,” and at least one other array of registers
must be provided. The method is similar to that shown
in Fig. 7 for decimation in time. The forms of Figs. 5, 6,
7,10, 11, and 12 constitute a set of what we might call
canonic forms of the fast Fourier transform. We may
chioose among these forms to find an algorithm with the
properties of “in place” computation, normally ordered
input, normally ordered output,-or normally ordered
coefficients, but not all four at once. To achieve “in
place” computation, we must deal with bit reversal, and
to eliminate bit reversal we must give up “in place”
computation. The two methods most effective when
using homogeneous storage facilities are those providing
in right order the sine and cosine coefficients needed in
the computation. The other methods seem less desir-
able since they require wasteful tables. Still, all six
methods have about equal usefulness, and the method
used best will depend on the problem at hand. For
example, the method shown in Fig. 10 may be used
to transform from the time to the frequency domain,
and the method shown in Fig. 4 may be used for the
inverse transform. Any of the methods described above
may be used for the inverse discrete Fourier transform if
the coefficients are replaced by their complex conju-
gates, and if the result of the computation is multiplied
by 1/N.

The six forms mentioned are, in a sense, canonic, but
one could also employ a combination of decimation in
time and decimation in frequency at different stages in
the reduction process, vielding a hybrid signal flow
graph.



G-AE SUBCOMMITTEE: THE FAST FOURIER TRANSFORM 55

A Useful Computational Variation: 1t may be worth
pointing out here how some programming simplicity is
realized when the factors p and ¢=N/p are relatively
prime. As described by Cooley, Lewis, and Welch, [2],
the “twiddle factor” Wi of (23) can be eliminated by
choosing subsequences of the X;'s that are different
than those used before. The DFT computations are
then conveniently performed in two stages.

1) Compute the g-point transforms

—1 e -
S oo 0,1, -, p—1

B, = 31
k=0 7’=0,1,"',q_‘1 ( )
of each of the p sequences
1= 07 17 P — 1
Yk(i) = ka+qi (32)
= 07 17 3 q — 1
2) Compute, then, the p-point transforms
p—1
A, = D B, . Waim (33)

i=0
of the ¢ sequences B,, where

s=rpP)t+mglgy? (mod N,0< s < N) (34
and the notation (p),! is meant to represent the re-
ciprocal of p, mod g, i.e., the solution of p(p);'>1
(mod ¢q).

CONCLUSION

The integral transform method has been one of the
foundations of analysis for many years because of the
ease with which the transformed expressions may be
manipulated, particularly in such diverse areas as acous-
tic wave propagation. speech transmission, linear net-
work theory, transport phenomena, optics, and electro-
magnetic theory. Many problems which are particularly
amenable to solution by integral transform methods
have not been attacked by this method in the past be-
cause of the high cost of obtaining numerical results this
way.

The fast Fourier transform has certainly modified the
economics of solution by transform methods. Some new
applications are presented in this special issue, and
further interesting and profitable applications probably
will be found during the next few years.

APPENDIX

As is well known, if the filter impulse response is fre-
quency-band-limited to 1/27 Hz and is given by its
Nyquist samples V3 spaced T second apart, and further-
more, if the input waveform is also frequency-band-
limited to 1/27 Hz and given by its Nyquist samples X
spaced 1 second apart, then the filter output waveform

is also frequency-band-limited to 1/27 Hz and com-
pletely specified by its Nyquist samples Z, spaced T
second apart

Zo=2. X V=2 X, 0 Vo (35)
k=0

=0

The convolution relationship facilitates computation of
this equation.

To prove the convolution relationship, let the DFT of
the X’s be A4, and correspondingly the DFT of the
YiW's be B,. The IDFT of the product of 4,-B, then
becomes [see (4)]

< 1 N—1
A B W~
N?> Z

r=0
1 N—1 N—1 N-—1

Z Z ZXleWr(k+l——s)

72
N% 120 k=0 1m0

Il

= — XV, PR
Nk:o =0 r=0 ]V
1 8 N—1

= Z XVt + — Z XkYN+s—k
N 1= IV gesy1

1
<W> -Zs + perturbation term.  (36)

If the first N/2 samples of each of the two time series
(X3) and (V3) are assumed to be identically zero, then
the perturbation term of (36) is zero so that the IDFT of
the product of the two DFT's multiplied by N is equal to
the convolution product Z, of (35). Since it is always
possible to select the time series to be convolved such
that half of the samples are zero, the convolution rela-
tionship for the DFT can be used to compute the con-
volution product [see (35)] of two time series.

It is useful to point out that if 4,=25,, a periodic
autocorrelation function emerges.
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